對稱簡潔除了美也很實用:幾個應用對稱思維來破解的數理益智問題
對於物理學家來說,美麗意味著對稱和簡單。如果理論是美觀的,這意味著它具有強大的對稱性,可以以最緊湊、最經濟的方式解釋大量數據。更確切地說,如果我們在方程式之內互換變數時,方程式能保持不變,那麼方程式將被認為是美觀的。
──Michio Kaku 理論物理學家、科普作者
語云愛美是人類的天性,儘管情人眼裡出西施,每個人的審美觀點可能不同,但基本上「美」是脫不了 對稱 與 簡潔 !你聽說過鼻樑不正、左眼大右眼小的美女或俊男嗎?事實上讓人望而生畏的獅子或老虎,其長相也都具有左右對稱的美!花之所以美,更是脫離不了其對稱性。
物理學家也是人,因此當然也愛美,例如在〈近代物理的先驅:馬克斯威〉一文裡,筆者就談及馬克斯威看到了實驗導出之 電磁方程式 缺少對稱之美,因此人為加入「位移電流」,使他在 1865 年能導出電磁波的存在,並證明光是一種電磁波。現在,對稱已經是物理學家的一個主要工具:在尚不清楚基本粒子的作用時,他們就是靠對稱引導而發展出「標準模型」!
對喜好數學和物理的科普讀者,「對稱」與「簡潔」的概念也能幫助我們解決一些學習過程、或日常生活中所碰到的問題。
動動腦,思考一下這些數理問題吧!
- [a] 人人都知道運動是「相對的」,因此說「太陽是以橢圓的軌跡繞地球運動」,事實上應該也是不錯的;可是為什麼科學家一定要說「地球繞太陽」呢?
- [b] 四隻螞蟻分別佔據了正方形的 A、B、C、D 四個角落,每隻螞蟻均以等速永遠朝著另一隻螞蟻前進(不需沿著正方型的邊,如A→B、B→C、C→D、D→A),最後牠們會碰在一起嗎?
- [c] \( \iint_{a}^{b} \frac{x+y}{\sqrt{x}-\sqrt{y}}dxdy=? \)
- [d] 一條固定長度的繩子彎曲折成四角形,最大面積的四角形之兩邊比為何?
- [e] 用一條固定長度的繩子彎曲折成任何形狀,最大面積的圖形為何?
- [f] 因為重男輕女的關係,世界組織規定:只要一生男孩就不能再生了;但如果是女孩,則一定要繼續再生,一直到生男孩為止。如果生男生女的機率完全一樣,那麼長時間以後,女性人口是不是會比男性多?
- [g] 如下圖,所有的電阻都是 Ω,那麼 AB 兩點間的等效電阻是多少?
- [h] 一個平面的正七角形,每個角上均帶 +Q 電荷,中心點的電場方向為何?
都想出來了嗎?看看解答怎麼說
- [a] 答案是:運動的確都是相對的,如果將行星的運動解釋為地球及其他 8 個行星圍繞太陽,則它們的軌跡方程式將都是非常 簡單 (橢圓)——可以用最緊湊、最經濟的方式解釋大量數據。反之,如果認為地球是太陽系的中心,則除了太陽軌跡是橢圓外,其它行星的軌跡都將非常複雜!
如果認為地球是運行的中心,那就要用很複雜的系統才能解決某些觀察到的現象如「水星逆行」,上圖即為地心說的其中一個版本。圖/wikimedia commons
在相信上蒼不會那麼笨手笨腳,簡單就是美的「盲目信仰」下,「地球繞日」說自然佔了上風!你說科學家不是愛美愛得一塌糊塗?!
- [b] 因為這四隻螞蟻永遠等速朝著另一隻螞蟻運動,螞蟻的相對位置會形成越來越小的正方形,所以最後會在中心碰在一起。
筆者對這一問題特別有印象,在籌劃創辦「科學月刊」(1969 年)之時候,由一位學數學的同學提出來的;當學物理的還在思考著如何找出其運動方程式時,筆者已衝口而出謂「當然碰在一起」!筆者當時閃過腦中的想法是:如果牠們最後是在那裡繞圈子永遠不相逢,那麼圈子應該是多大的?從對稱的觀點來看,任何圈子不是都應該可能嗎?只有中間的一點是特別的「圈子」,因此毫無疑問地,牠們將在哪裡碰在一起!
到了寫這篇文章,筆者發現當時的想法事實上是錯誤的:因為永遠朝著另一隻螞蟻運動,是不可能形成圈子的(見圖),只能形成越來越小的正方形,所以最後一定要碰在一起!單隻螞蟻的路徑會是逐漸內縮的螺旋型,但略微想了一下,覺得運動方程式事實上很難找註1!
永遠朝著另一隻螞蟻運動,是不可能形成圈子的。圖/作者提供
- [c] 此一積分具有(x,y)互換的「反」對稱,因此答案為零。
一個大家所熟悉的例子是:如果一個函數\( f(x) \)具有 y-軸的「反」對稱{\( f(-x)= -f(x)\)},則從 -a 到 +a 的積分應等於零。這一題目的對稱軸是同時與 x-軸及 y-軸成 45 度的斜線。
不用對稱之運算證明如下(第 1 個等號「=」是 x、y 互換的結果;第 2 個等號「≅」號是因 x、y 只是用來表示變數,與用什麼符號來表示無關:例如 ax2+bx+c=0 與 ay2+by+c=0 根本是相同的方程式,只是用不同的符號來表示變數而已):
\( \iint{a}^{b} \frac{x+y}{\sqrt{x}-\sqrt{y}}dxdy\) \(=-\iint{a}^{b}\frac{y+x}{\sqrt{y}-\sqrt{x}}dy dx \) \( \cong -\iint_{a}^{b}\frac{x+y}{\sqrt{x}-\sqrt{y}}dx dy\)
將最後一項移到左邊與第一項合併
\( 2\iint_{a}^{b}\frac{x+y}{\sqrt{x}-\sqrt{y}} dx dy=0 \)
[d] 答案是邊長一樣的 正方形 。
因為如果邊長不一樣,那麼我們不免要問,為什麼是這一個長方形、而不是另一個長方形呢?只有正方形是一個特殊的長方形![e] 基於上面的邏輯,相信許多讀者已經知道答案了:當然是 圓形 !
這裡的邏輯事實上是與前面有點不一樣的,因為任何正多角形事實上是都很「獨特」的,但同樣的問題還是存在:如果是正六角形,為什麼不是正五角形和正八角形呢?圓形具最高的對稱性,沒有這一問題!
在這裡筆者想到了一個自然界的現象:為什麼許多皮膚病多是呈圓形的呢?固定長度,圓形面積最大;反之,固定面積,圓形邊長應該最短:這不是最有利於細菌反抗「外面」的攻擊嗎?城堡很少是圓形的,就這點來看,人類顯然還是比細菌笨了一點!同樣的道理,體積一樣、面積最小的立體結構應是圓球——這是否與自然界中許多動植物(如細胞或水果)都是以圓球形狀出現有關?[f] 新婚生小孩,除了一半家庭是只有一個男孩的外,其他一半家庭最後都是女多於男(或相等);因此直覺的反應可能是:千百年後,女的將比男的多!可是換一個角度看,每天新生出來的小孩總是男、女數相等,怎麼可能破壞男女的平衡呢?雖然決定誰可以繼續生小孩時,男女的平等被破壞了,但這一條件,並沒有破壞決定生男育女機率相等的「物理定律」,因此應該不會影響男女數的平衡。事實上,問題之條件(只要一生男孩就不能再生了;但如果是女孩,則一定要繼續再生,一直到生男孩為止)完全是故意用來擾亂你的思路的:任何一刻之男女數的增加都是相等的,與什麼樣的夫妻可以再生無關。
在「時間的方向性」一文裡,筆者提到了大物理學家波茲曼(Ludwig Boltzmann)於 1872 年用牛頓力學導出具有時間方向性的「H-理論」;可是牛頓力學具有時間對稱性,怎能產生一個不具時間對稱性的結果呢?因此「H-理論」提出後便立即受到攻擊。我們不能在這裡犯同樣的錯誤。[g] 用傳統的線路分析將是非常困難的(超過普通物理程度)註2;但利用對稱則輕而易舉。以通過 AB 兩點的連線為軸,這網絡具有一個旋轉 120 度的正三角形對稱;因此(x、y、z)三點可視為同一點 A' ──永遠具有同樣的電位。同樣地,(x'、y'、z')三點也可視為同一點 B'。AA' 間共有三個相同的電阻並聯,故其等效電阻為 Ω/3。同樣地,BB' 間也共有三個相同的電阻並聯,故其等效電阻亦為 Ω/3。A'B' 間則共有六個相同的電阻並聯,故其等效電阻為 Ω/6。這三個等效電阻串聯,故 AB 間的等效電阻為 5Ω/6!
用傳統的線路分析非常困難,但利用對稱則輕而易舉。
- [h] 因為對稱的關係,任何方向均應該有七個對稱方向。如果答案只能有一個方向,不用三角幾何計算,我們就應該知道答案只能為「零電場」。
結論
以上是筆者想到或者在網路上看到的、可以用「對稱」解決的幾個問題——相信應該還有很多類似的問題。從[c] 題我們可以看出:如果知道怎麼直接計算,我們根本不需要「對稱」!但如果命題具有對稱性,則像[a] 及[g] 一樣,我們根本可以完全不知道怎麼計算,就可以輕輕鬆鬆地得到答案:這正是數學上「對稱理論」—「群論」—的巨大力量!
註解
- 真正的意思是:筆者還不知道怎麼找運動方程式來解決這一個問題。不怕被方程式嚇倒的讀者可以參考 4 Bugs chasing each other differential equation(裡面有幾種解決的方法)。
- 所謂「普物程度」就是筆者所知道之「透過電阻串聯及並聯的理論來簡化」(事實上大概不可能用此一理論來解決這一個問題)。想知道電機系的學生如何解決此一問題的讀者可以參考 The resistor cube problem。
延伸閱讀
有關對稱與物理、化學的關係,請參閱:
「對稱與物理」(科學月刊,2010 年三月號)
「規範對稱與基本粒子」(科學月刊,2014 年十一月號)
「左旋還是右旋?化學對稱跟你我的身體有關」(泛科學,2015/09/25)
「時間的方向性」(科學月刊,2016 年二月號)
「群論、對稱、與基本粒子」(科學月刊,2018 年 9 月號)
「基本粒子的標準模式 」(泛科學,2018/10/9)
2017 年 8 月以前的上面文章均轉載於「我愛科學」(華騰文化有限公司,2017 年 12 月出版)。有關科學家的盲目信仰,請參閱「愛因斯坦相信的上帝,是你以為的那位上帝嗎?」(泛科學,2018/3/30)。
「近代物理的先驅:馬克斯威」(科學月刊,2019 年四月號)。
今年恰逢登月 50 週年,快來和我們一起配著飲料爆米花,重溫振奮人心的電影《阿波羅 13 號》!當天還會邀請到《科學史上的今天》作者參與映後座談喔!速速報名這裡走:https://lihi1.com/W4aXO
歡慶泛科學院 MasterTalks 線上課程專館開幕! 8/15 前每堂課程現折168元,任買1堂就抽
Switch !
※活動步驟※ 1️⃣打開 MasterTalks專館 2️⃣輸入168元折扣碼:mastertalks
了解活動詳情: http://bit.ly/2OdioaV
The post 對稱簡潔除了美也很實用:幾個應用對稱思維來破解的數理益智問題 appeared first on PanSci 泛科學.
作者暂无likerid, 赞赏暂由本网站代持,当作者有likerid后会全部转账给作者(我们会尽力而为)。Tips: Until now, everytime you want to store your article, we will help you store it in Filecoin network. In the future, you can store it in Filecoin network using your own filecoin.
Support author:
Author's Filecoin address:
Or you can use Likecoin to support author: