三场景说透人工智能如何赋能新零售
图片来源@视觉中国
从上世纪五十年代起,人工智能历经多年的起伏发展,不断在业务场景中尝试应用,终于在2016年出现转折----世界围棋冠军李世石在与Alpha Go的比赛中投子认输,之后的几年里,各种形式的人机大战不断上演(从围棋、德州扑克到即时战略游戏等),机器相对人类取得一连串压倒性的胜利。人们惊讶地发觉,人工智能的力量已经不容忽视。
过去的二十年,算法的优化、数据的积累和计算力的提升,这三个要素极大地助推了人工智能的崛起。
从设备感知,到大数据分析,再到辅助决策,人工智能能力的提升逐步带来了各领域商业形式的改变。今天,人工智能被视为数字网络的升级版,相关的产品或服务,加速在不同领域商业化实践。其中,在零售业的表现尤其明显,正在经历以消费者为核心的"零售革命",助推传统零售行业升级。
新零售是以数据为驱动的,对人、货、场等角色及相互关系的重构。互联网时代,碎片化的消费行为令传统的零售方式难以为继。而基于数据分析,综合使用各个维度来源的数据:历史交易数据、社交网络关系、购物习惯、在线浏览记录、周期性消费习惯等,人工智能在零售场景中可以实现营销预测并辅助决策。如今,智能货仓、无人快递车、精准营销等,都是人工智能与新零售结合的产物。
其中,人工智能(AI)技术是连通线上、线下场景的桥梁,可以跨越在线电商与实体门店的鸿沟,实现线上、线下数据互补,打造全新的购物体验。下面,我们从人、货、场三个维度举例说明。
一、 人的维度: 智能推荐
想象一下,施瓦辛格和赫本走进一家超市,理想情况下,我们希望门店会自动引导他们关注符合各自需求的单品,以不同的动线逛完这家店。
可实际上,目前大多数零售店提供的是完全一样的服务,因为在传统的零售市场里,他们即使被区分为不同客群,得到的也是几乎相同的服务。
众所周知,施瓦辛格和赫本无论是性别还是消费习惯等都差异极大,应当有完全不同的购物体验。这正是人工智能技术在新零售体验中发展的方向,针对不同人群的差异化需求,推出个性化的解决方案,这需要人工智能的深度融合。
个性化、定制化的推荐服务在零售行业能很好的提升顾客体验,随着消费的不断升级,品质消费、个性化消费也开始日渐崛起,越来越多的零售企业开始推出私人定制的服务:服装店可以根据尺寸定制服装,食品店可根据口味定制蛋糕,等等。
对于线上场景,如网上商城,通过埋点获取每个用户的页面浏览数据,根据这些数据,可以统计用户从哪里进入页面,中间如何跳转并查看了哪些页面,每个页面停留的时间及行为:如浏览、点击或收藏,最后在哪个页面结束。基于此类数据可进行浏览轨迹分析,计算网站关键路径的转化率,以了解整个网站设计的合理性、优化空间等,为优化页面设计提供基础,提升线上精准营销的效果。
线上购物的一个缺点是无法直接触摸感受商品,图片往往是消费者对商品认知的主要来源,尤其是服装的网销,如尺码、色差、质地等经常会有偏差导致纠纷。
这几年,网络虚拟试衣技术的发展相当迅速,虚拟试衣的难点在于既要对消费者的体型建模,又要对服装建模,对两者进行匹配,展示穿着效果。首先,消费者体型数据的采集大多依赖用户输入的测量数据,缺点是测量和填写的步骤比较繁琐,而且不完全精准。
相对的,此类数据收集问题在实体门店更加容易解决,比如苏宁推出的虚拟试衣镜系统。在实体门店中,试衣镜安装的角度是固定的,用户和镜子之间的距离可以通过引导探测,做到较为精确的建模。
在未来,试衣镜可能是线上、线下的链接点,在实体门店线下采集用户的体型数据建模后,便可以真实可靠地实现线上和线下的虚拟试衣。虚拟试衣镜能智能匹配许多套不同的搭配,这些款式既可以是店铺陈列的,也可以是从厂家订制的。试衣下单后,商家可以直接安排调货,寄送到指定的地点。
此外,线下实体店还可以创造店内互动体验,让线下购物更高效、更有趣、更个性化。相对于传统购物体验,有人工智能助力的购物更像是一种线下的生活方式,这对零售业生态提出了新的要求,也带来了巨大的变化。
二、 货的维度: 智能货架管理
在零售终端的智能化管理领域,虽然消费者支付方式发生了快速的迭代,从钞票支付,到卡支付,再到移动支付,店铺的货架管理手段却还停留在比较原始的阶段。其实,实体店的货品摆放可以通过人工智能实现更有效的终端管理。
设想一下,周末晚上有场精彩的足球赛转播,作为球迷的你准备邀请几个朋友一起喝啤酒观赏比赛。但当你到超市的时候,发现自己最喜欢的啤酒已经空架了,是不是有点抓狂?
对于厂商而言,产品在各个超市的货架摆放情况、是否及时补货、销售情况及关联因素、相应调整措施等信息都要通过人工巡查获得。缺陷很明显,信息收集和反馈的时间过长,并且监测数据不一定全面。
新一代零售的发展方向必将是货架管理的智能化,有效提升用户体验。比如:通过摄像头的人脸识别功能,可以在顾客进店时进行新老客户的身份识别,对老客户可以根据购物历史及周期习惯推荐购物路线,对新客户可以制作客户画像,精准营销;客户进店后,摄像头可以记录客户的行进轨迹,优化货架摆放设置。此外,还可以使用压力传感器监测商品被拿起、放下的情况,以及存货数量,对货架进行自动化的实时监测管理。
这对于零售管理的意义重大,将会真正实现从决策到销售的全流程贯通管理。例如,当缺货或者货品信息展示不合规时,可以实时发出警示;同时,对用户的挑选、购物行为可以有大量的数据积累,从而可以结合人工智能技术进行本地化展陈优化。
三、 场的维度: 智能物流管理
如今,零售行业不断发展,数字化的商品信息、高效的仓储和物流,从产品的生产到配送,正形成一个完整的智慧化零售业态。国内外的电商巨头都已经开始部署智慧供应链,自动预测、采购、补货、分仓,根据实时情况调整库存精准发货,从而对海量商品库存进行自动化、精准化管理。
具体来说,目前可以看到的智能供应链应用场景主要有:
(1)自动预测备货 :通过历史记录、节假日及促销、周期性因素、商品特性等数据预测备货,有效减少库存;
(2)智能选品 :智能化诊断当前品类结构,优化品类资源配置,实现了商品全生命周期智能化管理;
(3)智能分仓调拨 :预先将商品匹配到距离消费者最近的仓库,尽量减少区域间的调拨和区域内部仓库之间的调拨,提高时效性,同时优化调拨时的仓配方案,最大化降低调拨成本。
以苏宁为例,苏宁超级云仓是自主研发的定制化、系统化解决方案。它使货物从入库、补货、拣选、分拨到出库全流程自动化、智能化作业,极大的提升了仓储水平以及工作效率。
在这个过程中,采用了大量的物流机器人进行协同与配合,通过人工智能技术,让机器人适应不同的应用场景,完成各种复杂的任务,在商品分拣、运输、出库等环节实现自动化。
与传统仓储或者仅在单个环节实现自动化的仓储模式相比,智能仓储最大的特点在于机器人融入生产,改变生产模式,以及人工智能算法指导生产。因此,机器人技术、人工智能算法、海量商品的精准识别成为实现无人仓的主要技术瓶颈。
近年来,无人驾驶技术的研发得到了众多企业的重视,在商业化应用中不断成熟,包括无人重卡、快递机器人、快递无人机等,在物流运输、无人配送方面,构成一个完整的智慧物流配送体系。其中,无人重卡是连接区域物流中心的桥梁,快递机器人为最后一公里配送构建基础,快递无人机则全方位、无死角的保证这一公里的配送。越来越多的无人智能化设备被应用到具体场景,每个智能化的场景应用连成一体,构成智慧零售的关键一环。
四、 困难及前景
当前,人工智能已经成为传统行业转型升级的助推力,持续地改变我们的商业模式和生活方式。而人工智能技术在新零售体验中的应用,必将进一步推动深度定制购物体验的发展,深度定制购物体验则会带来用户使用的粘性。
当然,在发展过程中,也面临着一些困难与挑战。
首先,在目前阶段,数据是AI应用的必要基础,在长期的业务开展中,积累的数据维度多样、体量巨大、形式复杂,并且数据间很多时候无法融合互联,形成数据壁垒。
其次,零售行业注重利润率,而科技落地的成本不是每个零售企业都能够接受的。例如,对于大型的连锁便利店,如要实现众多门店的智能化,一次性投入成本较高,因而升级门槛较高,往往倾向于依旧采用传统方式。
尽管存在重重困难,众多的科技企业仍然进行了有益的尝试,在一些典型场景中探索人工智能技术的应用。尤其在零售行业,新技术的应用落地呈现爆发趋势。例如,零售企业在加速与人工智能技术融合,在"物"端深耕供应链管理的同时,在"人、货"端的用户体验上也增强了线上、线下的融合。从无人值守的便利架到无人配送车,从单个的机器人到智能化的无人超市,各种技术、产品和解决方案,向人们展示了人工智能助跑"新零售"的诱人前景。
【钛媒体作者介绍:本文由公众号"苏宁财富资讯"原创,作者为苏宁金融研究院金融科技研究中心副主任沈春泽】
更多精彩内容,关注钛媒体微信号(ID:taimeiti),或者下载钛媒体App
作者暂无likerid, 赞赏暂由本网站代持,当作者有likerid后会全部转账给作者(我们会尽力而为)。Tips: Until now, everytime you want to store your article, we will help you store it in Filecoin network. In the future, you can store it in Filecoin network using your own filecoin.
Support author:
Author's Filecoin address:
Or you can use Likecoin to support author: