医保支付新机制:像“个性推荐”一样,为患者匹配合理的治疗费用
图片来源@视觉中国
文 | 八点健闻,作者 | 张丽敏,编辑 | 王吉陆
2019年9月10日,马云宣布退休了。
在这之前4天,网易云音乐获阿里巴巴、云锋基金等共计7亿美元融资,估值70亿美元左右。这是公开报道中马云退休前阿里巴巴最新的一笔投资。
网易云音乐的产品逻辑,是根据用户听歌产生的数据,与其他用户行为做匹配,找出行为最为相似的那群用户,然后依据这群用户的听歌记录,做定制化的推荐。
这个逻辑,与中国医保支付机制DRGs的最新一种方法论----"大数据按病种分值"异曲同工。
一个患者到医院看病,医保该为他付多少钱,才能让他获得有效而合理的医疗服务?既不会过度诊疗,也不会敷衍了事。
"大数据病种分值"的方法是依据疾病诊断、治疗操作及个人特征等数据,找到相似的患者,根据他们的平均花费,为这个患者计算治疗费用。这个方法,也被通俗地称之为大数据DRGs。
DRGs的方法论,与关乎每一个人的医保费用精细化管理息息相关。做好了,医保基金的使用效率就能得到提高,而看病贵的问题也能在一定程度上得到解决。
中国的DRGs研究始于1988年,在2018年国家医保局成立,成为当仁不让的主力推手之时,已历经30个年头。
30年中,DRGs既发源于医院自发的绩效管理,也蕴含着医保控费的实际需求;既有引进国外分组器进行本土化改造的尝试,又有自主研发分组器的实践。
伴随着大数据时代的到来,医疗大数据、机器学习等智能手段,已被利用到DRGs的改革实践中,成为一股新兴的力量。
八点健闻此前的报道《中国DRGs的前世今生:一项舶来的医保支付机制如何本土化》已从时间维度,对从中央到地方的DRGs政策与实践进行了清晰地梳理与总结。
本文尝试从方法论的角度,说明各类DRGs之间的不同之处,尤其聚焦于大数据病种分值方法论上的创新,以便溯源追本,知往开来。
DRGs ----医保支付的"中庸之道"
简单理解,DRGs(Diagnosis-Related Groups)解决的是患者看病医保如何付钱的问题,要在"按项目收费"与"按人头收费"这两个极端之间,选择一条"中庸之道"。
若完全按照项目收费,会存在过度诊疗,例如重复入院、多开药物多做检查、刺激医院引入尖端诊疗设备和推销高价药物等问题。
若完全按照人头付费,则会诱导医院选择性接收病人,如接收症状较轻、住院时间相对较短的患者,推诿重病患者;分解患者住院次数,以获取更多的"人头",最终会导致医患矛盾突出。
DRGs的出发点是基于这样一个概念:患者所接受的治疗与患者的病情有关,与医院的特性无关,如病床规模,是否是专科医院等。
治疗每个患者都要消耗一定的资源,而每个患者因其年龄、性别、主要和次要诊断,以及入院时的状况等因素的不同而消耗不同的资源,医保部门通过计算患者消耗资源的总量,制定拨付医院的费用。
现实情况中,由于个体差异很大,不可能制定"一人一价"。这就需要采用某种方法,将预计消耗诊疗资源相似的人群划分为一个组别,针对每个组别制定单一支付标准(俗称"一口价"),向医疗机构支付费用。
比如说,同样一个治疗关节炎的全膝关节置换手术,在上海不同的医院,治疗费用从5万多元到9万多元都有,最高和最低相差1.74倍。制定"一口价",可以引导遏制不合理的医疗行为,使医院管理更加科学化。
从上述描述可以看出,实施DRGs的关键点有两个:第一,如何正确合理地分组?第二,如何制定合理的"一口价"?这两个问题也紧密相关,分组的合理性能够极大提升"一口价"制定的准确性。
那些DRGs的先行者们
DRGs分组的基本理念是依据患者疾病类型、治疗方式和个体特征的不同而区分不同的组别。可以分三个步骤来实现:
第一步,将大部分病例划分入不同的"疾病大类(MDC)"。澳大利亚AR-DRGs分为23个疾病大类,美国AP-DRGs和我国的CN- DRGs均分为26个疾病大类。
第二步,将同类MDC依据治疗"操作"方式不同,再细分为基干DRGs。
第三步,同类疾病、同类治疗,再按病人个体特征不同,如病例的年龄、性别、出生体重(新生儿病例)等,将基干DRGs再度细分。
举例来说,"胸部食管恶性肿瘤"与"血管性心脏病"即属于不同的疾病大类(MDC),首先就分入不同组别。
然后,针对"胸部食管恶性肿瘤"有不同的治疗手段,所以"胸部食管恶性肿瘤+保守治疗"、"胸部食管恶性肿瘤+食管癌根治术"、"胸部食管恶性肿瘤+食管癌根治术+空肠造口术"将成为不同的基干DRGs。
最后,针对同样被分入"胸部食管恶性肿瘤+食管癌根治术"这一组别的患者,依据其年龄、性别等个人特征再度细分,比如细分为"胸部食管恶性肿瘤+食管癌根治术+男""胸部食管恶性肿瘤+食管癌根治术+男+40-50岁"等不同组别。
上述举例只是为了解释说明DRGs三步分组的一般流程,实际操作过程中,情况要复杂得多。
由于病例数量和类型众多,DRGs的分类过程需要借助计算机来完成,这就需要对上述三个步骤逐一编码。不同DRGs的主要区别就体现在分组的细节和编码系统的设计上面。
比如,上海申康在借鉴澳大利亚AR-DRGs的分类方法时发现,在肾疾患内科治疗组,AR- DRGs分为L61肾衰竭、L62肿瘤、L63感染、L64结石、L67其他。
而按照《肾脏内科国家临床重点专科建设项目评分标准(试行)》要求,肾脏内科主要病种为原发性肾小球疾病、间质性肾炎、高血压肾病、糖尿病肾病、狼疮性肾炎、血管炎肾损害、淀粉样变肾病等。如果上述肾病导致肾衰竭,则肾衰竭体现在病案首页的其他诊断中,而非主要诊断,导致肾疾病患者基本都在L67中。所以申康在实践过程中,以AR- DRGs为基础,推出了申康版DRGs。
在编码系统方面,美国的AP-DRGs使用ICD-9诊断和操作编码,澳大利亚的AR-DRGs使用ICD-10。而"师承"AP-DRGs和AR- DRGs的北京版DRGs的诊断编码采用ICD-10,但操作编码用ICD-9。
此外,虽然DRGs使用ICD编码作为基础,但在实际应用过程中,还会对依据各地实际构建本地的ICD版本,例如美国的ICD-CM、澳大利亚的ICD- AM、北京的ICD-BM等。
2015年,国家卫计委的医政医管局,成立了国家DRGs质控中心,在北京版DRGs的基础上发布了CN(Chinese)-DRGs模式,并在全国15个试点城市推行。
2017年,国家卫计委下属的卫生发展研究中心,又推出了以"收付费改革"为中心的"C(China)-DRGs"模式。
分组的细节不同以及编码系统的不同,再加上各地实践过程中会依据各地不同情况,删减、修改、变更现有分组,导致了中国DRGs为数众多且无法统一。
这么多版本、这么多术语,有没有看得很晕?没关系,因为到下一节,就可以把这分组这件事忘记了。
不设分组器的大数据病种分值
中国DRGs的先行者引入国外标准时有些内生性的问题无法解决。
第一,各种分组设定,是先有分组模型,再去对照现实,所以会与现实存在偏差。有些疾病及诊疗方式,可能就不在现有的分组器中。
此外,中国经济水平及医疗水平发展不均,导致各地区诊疗路径不一。例如,上海治疗骨折的路径是西式的,会通过手术的方式用钢板固定;但在西部偏远地区,外科医生会用木棍绑在伤腿上的方式进行。两种治疗手段的花费相差甚远,患者恢复时间也不一样,感受更是迥异。
因此,上海试行的DRGs在运用到西部地区时,还要进一步调整。但由于分组器是人为设定的,所以在做适应性改造时,还需要人工介入调整,所需时间长,成本较高。
第二,任何政策的出台都存在着管理者与政策参与者之间的博弈。一旦参与主体熟知政策规则,其最优化行为的理性选择会对政策的长期适用性造成影响。
例如,八点健闻在调研各地实施DRGs的过程中发现,面对医院和医生的抵制,出于防范医生钻空子的目的,大部分医保试点地区的DRGs分组器不向医生公开。
然而,此举并不有效。2018年,国家医保局曾组织专家去医院调研DRGs。一些医生坦言,DRGs的分组规则即使不开放,经过一段时间的实际报销情况,医生们大致也能推算出来。这就可能发生"病人被分入一个比其应分入的DRG组复杂程度更高的组,使医院获得更高的支付"。
大数据应用技术发展到今天,对于上述两个问题都已有了较为成熟的解决方案。
试想,你手机上的音乐类App,会依据你的喜好为你推荐你喜爱的歌曲;购物类的App会为你推荐你可能喜欢的商品。背后的机理就在于,这些App会根据你的听歌或者购物行为产生的数据,与其他用户行为做匹配,找出与你行为最为相似的那群用户,然后依据这群用户的听歌或消费记录,向你做定制化的推荐。当然,"找相似"的这个过程,还需要运用统计学的方法。
这个场景是不是看着有些眼熟?----DRGs的核心不就是希望在任意一个患者进入医院时,就能依据疾病诊断、治疗操作及个人特征数据,找到与他相似的患者,根据这群患者治疗的平均花费,为这个患者计算应该预付的治疗费用吗?
所以大数据病种分值干脆不要分组器,实现动态分组。
首先,将医院病案首页中统一的编码统统输入系统,穷举"疾病诊断+治疗方式"的排列组合,形成了1000多个疾病诊断组和3000个左右的治疗方式目录组。然后利用前文所描述的"找相似"的方法,最终形成一万多个具有相似特征、可以用来制定"一口价"的组别。
这样一来,就较好地解决了上述两个问题:因为数据来源于全量的病例数据,所以不存在没有被录入的疾病及诊疗方式;又因为分组是动态调整的,即使医生的预期发生了改变,动态分组也能察觉到预期的变化而调整分组(假设你之前爱听华语歌曲,有一段时间喜欢听英语歌曲,你的个性化推荐目录也会出现调整,英语歌曲的推荐会变多)。
DRGs定价制度
说完分组说定价,简单说来DRGs定价制度大致有两个思路:
第一,形成疾病分组后,利用过去3-5年次均费用的结果制定定额标准。这种定价方式简单易行,但由于定价"一刀切",且缺乏动态调整,一般而言,多用于首次DRGs定价。
第二,理想情况下,在考虑当地经济医疗发展水平的基础上,进行病种的成本核算确定基本费率,并通过确定各DRG组的相对权重来最终确定每组的总费用。
考虑到目前我国部分药品与医疗器械价格虚高,且许多劳务性医疗服务项目收费过低,尚没有一套较成熟完善的成本核算分析,所以很难界定每个DRG组的费用。
但已有一些尝试解决的方法,如前文所述的C- DRGs,即通过在31个省市设立全国医疗服务价格与成本监测研究平台,采集了大量的各地上报数据作为价格与成本的研究依据。
此外,大数据DRGs由于收集了全量的数据,可以实时动态地反映每组治疗费用的变化。虽然初期用于定价的数据精准度不够,但随着DRGs改革的不断推进,分组定价也会越来越趋近于真实费用。
DRGs效果评估
虽然中国的DRGs实践已有30年,但在全国范围内,"起了个大早"的DRGs改革却"赶了个晚集",巨大的区域差别、复杂的机制设计与参与各方的明显博弈,一度令其举步维艰。
C-DRGs、CN- DRGs、申康版DRGs,甚至还有云南玉溪、禄丰、广西柳州等地版本的DRGs都正在试点当中,尚未收到全面的效果对比数据。但存在一些指标,可以用来衡量DRGs分组的有效性。
入组率。即某地区或某医院住院医疗服务成功分组的例数。入组率越高,医保支付能覆盖的范围越广。
组内变异系数(CV)。即用该组医疗费用的标准差除以该组医疗费用的平均数,用来衡量组内医疗资源消耗的同质性。CV值越小,支付的稳定性越好,越接近均值,风险越小。
例如,用两种计算方式得到的某个分组组内平均费用都是9万元,但方式一的分组中实际个体构成为12万元、9万元、6万元;方式二分组中实际个体构成为10万元、9万元、8万元。方式二的CV值明显要更低,支付的风险更小。如果费用是6万元和12万元,医保都按照9万元去付,对两者都不合适。
预付费用与实际费用的偏差比对。在DRGs试行一段时间后,可以计算每个组别预付费用与实际费用差值的绝对值,然后对绝对值求和,该值越小越好。
DRGs中存在一个"不可能三角",即分组少、入组率高、组内变异系数低,这三个目的不可能同时达到。分组越细,自然入组率会提高,组内变异系数会降低,但分组则会大大增加;若分组少,入组率高,则必然组内的个体差异会增大,给医保支付带来更大的风险。
"DRGs不会不经过纷争就形成标准,一定是有实践、有教训、有成本后才能形成规范。目前,DRGs的发展是在把潜规则变成规则的过程中。在规划中政府能做的是,形成方向性引导和政策配套支持,而不是政府先出台标准。而大数据DRGs的特点就是,只要数据量够大,就能很快形成规则。"上海市决策咨询委员会委员许速如是说。
更多精彩内容,关注钛媒体微信号(ID:taimeiti),或者下载钛媒体App
作者暂无likerid, 赞赏暂由本网站代持,当作者有likerid后会全部转账给作者(我们会尽力而为)。Tips: Until now, everytime you want to store your article, we will help you store it in Filecoin network. In the future, you can store it in Filecoin network using your own filecoin.
Support author:
Author's Filecoin address:
Or you can use Likecoin to support author: