【书评】《熵减》:华为首次公开,麒麟芯片的发展变革之路
作者: 华为大学。它基于独立预算、收支平衡为华为公司提供服务市场化的教育赋能咨询与服务。
出版社: 中信出版社
出版时间: 2019年8月
熵和熵减,都是来源于物理学的概念。熵被用来度量系统的混乱程度,熵增就是混乱无效增加,导致系统功能减弱;熵减就是系统功能增强。一个系统,趋向无序,或者说,有序性的递减是一种宿命。在企业发展过程中,熵增是必然趋势,管理要做的只有一件事情,就是尽量减少熵,也即增加企业的生命力。
华为创立30 余年来,不断推动公司实现熵减,克服队伍超稳态、流程冗长、协同复杂等大企业病。在任正非看来,所有的管理、经营行为就是为了达到一个目的---- 防止组织生命力的衰减,抵挡组织从有序趋于无序,避免组织逐渐走向混沌,直到死亡。
在《熵减:华为活力之源》一书中汇集了华为内部针对任正非华为管理思想中的"熵"、"熵减"等概念的讨论成果并编选成集,其中既有华为高层在管理理念层面的反思,也有中层及一线员工践行过程中的经验总结。本文节选自第二章业务实践篇- 麒麟变革故事。
雪山上的夏尔巴 --麒麟变革故事
在近年历次华为旗舰手机的消费者调查中,作为支撑华为手机商业成功的重要力量,麒麟芯片越来越受关注。但实际上麒麟一路走来的艰难险阻,只有经历过的人才有深刻体会。这里,我们希望通过 2003 年以来的若干小故事,来探究麒麟的奋斗和变革历程。
需要说明的是,麒麟只是一个代称,实际上是指用于手机的一系列芯片或部件,即华为无线终端芯片,包括麒麟、巴龙、HiKey(氦客开源开发板)、RF、Connectivity、PMU(电源管理单元芯片)、Codec(编解码器)等。
4G LTE Modem :星星之火,可以燎原
2009 年 12 月,一个天寒地冻的日子,几个中国年轻人带着CPE(客户终端设备)在德国郊区做户外信号测试。到现在,大家还记得户外冷冰冰的食物和水,记得全身冷到僵硬的感觉,但记忆最深刻的,还是测试过程中大家一起奋斗的那股干劲儿。他们当时测试的,是华为第一代商用 LTEa 终端芯片巴龙 700,内部代号叫北极星 Polaris。他们希望"北极星"能够指引胜利的方向。
华为无线终端芯片要从2003年说起。那时,公司决定研发用于 WCDMA(宽带码分多址)的手机芯片-- 代号是梅里。可惜这个项目不太成功。2007年中,公司正式宣布停掉梅里项目。时任海思总裁徐直军表示,尽管梅里这个项目不做了,无线终端芯片领域还有更多挑战值得攻克,鼓励大家坚持下去。他说:"我们华为就是'傻傻地投'。"
梅里这款产品虽然最终没能成功商用,但给团队积累了最为珍贵的产品经验与教训,更重要的是培养了一批人。梅里项目的结束其实是一个全新的开始,公司决定兵分三路:在 3G Modem(调制解调器)和 AP(应用处理器)处理器领域分别积蓄力量,另一方面也开始了 4G LTE (注:LTE,通用移动通信技术的长期演进,即通常所说的 4G 无线通信。)新技术的预研和探索。
于是三个团队分别重新踏上征途。王劲和King带领团队开始 3G Modem(含2G)研发;Jerry则带领梅里团队的一部分核心力量,在高端 AP 领域继续探索;第三个团队则专攻 4G LTE方向。
2007年底,华为无线产品线研发4G网络设备需要配套的 4G测试终端。Sean 曾经有过3G测试终端的开发经验,责无旁贷地挑起了LTE 测试终端开发的大梁。同时,由于缺人,公司决策将高端芯片专家William 从发展得如火如荼的数字媒体芯片领域抽调到 LTE 领域,负责 LTE 芯片的开发。
William 是一位非常有经验的芯片开发专家,在数据通信芯片、安全芯片、数字媒体芯片等领域有着成熟的产品开发经验。后来证明,正是这样才实现了4G 乃至5G Modem 芯片的"星星之火,可以燎原"。
新鲜血液的加入,不仅带来了成熟的 SoC(片上系统)架构和电路设计经验,还带来项目开发的新思维。William 说:新团队没有经历梅里项目的磨难,但正是因为不了解,反倒有更多勇气去挑战,真正激发出团队潜力。
第一代LTE单模Modem巴龙700:是25Mbps,还是100Mbps?
在定义第一代 LTE 芯片巴龙 700 的最高速率时,大家在25Mbps(传输速率单位,兆比特每秒)和100Mbps之间摇摆不定,当时HSDPA(高速下行分组接入)的下行峰值速率在 3.6 Mbps 左右,有些人觉得 LTE 做100Mbps 太高了,能做到 25Mbps 就行,但 William 不这样想。
基于路由器领域的经验积累,他认为,4G 初期的速率在无线领域看来确实很高,但在路由器领域,这个速率差不多是 10 年前的水平。尽管传输的原理不同,很多核心技术却是相通的。William 坚持 100Mbps 没什么问题,物理层以上的问题能够解决。
这是一款LTE单模芯片,支持LTE FDD/TDD(频分双工 / 时分双工),不支持 2G/3G。在当时 LTE 网络没有大规模部署的情况下,单模LTE应用场景受限,既不能做手机,也不能做数据卡, 只能放在固定位置用于CPE产品形态。而且彼时行业已经推出成熟的 2G/3G/4G 多模 LTE 芯片,并且在主流市场商用发货。从这个角度说,单模LTE芯片巴龙 700 是一个彻头彻尾的"落后"的产品,既然这样,为什么还要设计这样一款产品?
其实这是有原因的。负责产品规划的专家 Benjamin 说:2010 年恰逢德国政府发布国家宽带战略,号召运营商在 DD 800MHz(LTE Band 20,运营商的一个频段)频段上开展移动宽带业务,弥补德国广大乡村地区无线宽带接入的缺口,消除数字鸿沟。
这在对手眼里,不算肥肉,但对 4G Modem 巴龙团队来说却是天赐良机,于是才设计了巴龙 700。Sean 和 William 团队完成了巴龙 700 的交付,德国的运营商同意采用基于巴龙 700 平台的 CPE,4G 巴龙芯片获得了一次宝贵的机会。在当时业界已经推出多模芯片的背景下,一款单模 LTE 芯片能够获得德国运营商的认可,实属不易。
借此契机,华为充分发挥端管协同优势,成功支持德国几家重要的运营商利用 DD 800MHz"数字红利频谱"在全德范围内部署移动宽带网络,巴龙 700 成功在夹缝中打开市场。开头提到的在德国郊区进行信号测试,就是这个时候。
趁热打铁,基于对中国移动TD LTE 频段的支持,巴龙 700 在上海世博会演示的即摄即传体验峰值速率达到了 100Mbps,海思也成为最早完成工信部TD LTE 测试的厂家。基于巴龙 700 的数据卡还支撑华为网络完成在日本运营商的拓展。这就是 LTE 单模三年技术攻关播种下的革命火种。
第一代LTE多模Modem巴龙710:选择成熟的3G架构,还是面向未来的LTE架构?
2012 年,多模已经成为行业主流,业界 LTE 芯片已经做到第二代,甚至第三代,海思也迅速转入多模 4G LTE 芯片巴龙 710 的研发和攻关。这时他们遇到了多模 Modem 架构选择的问题。
此前,2G/3G Modem 芯片开发架构基于 ARM9(此处 ARM 为英国 ARM 公司,下同)和 ZSP(一款数字信号处理产品),有成熟的解决方案的交付能力;而之后的 4G LTE 单模 Modem 芯片则基于新的 ARM11 CPU(中央处理器)和 CEVA(思华科技,公司名,也是其产品的名字)处理器,开发了全新的更有竞争力的架构。
对于 LTE 多模 Modem 的架构,两个团队进行了激烈的讨论,一方认为应该选择成熟的 3G 架构,有利于产品的快速量产; 另一方认为应该选择面向未来的 LTE 架构,有利于未来演进。双方相持不下,时任海思研发管理部部长的何庭波没有立即拍板, 而是给大家讲了一个故事。
2G 时代,半导体巨头 TI(得州仪器)、英飞凌,基于成功的 2G Modem 去开发 3G Modem,结果失败了。而后起之秀高通则是先开发了 3G Modem,之后把 2G 功能融合进去,结果成功了。何庭波沉默了一会,对大家说:"现在我们面临同样的历史时期,要从 3G 向 4G 切换。采用旧的成熟的架构,加入新的功能,事实证明是不适用的,无法很好地演进。我们的 4G 技术架构选择,要面向未来。"
于是最终决定:采用 4G LTE 架构,把 2G/3G 功能融入进去。正是这次选择,奠定了巴龙 LTE 未来芯片的清晰演进路线,从 LTE Cata. 4(注:LTEcat是 4G 网络速度的一个技术标准) 的 150Mbps,到 Cat. 6 的 300Mbps,再到 Cat. 12 的 600Mbps,整个架构支撑了华为无线终端芯片在 LTE 上的持续演进。
万里征程:从 4G LTE 迎头追赶,到 5G 时代全球领先
2013 年 CES(国际消费类电子产品展览会)期间,公司从产品竞争力的角度出发,决定把 Modem 和 AP 合起来,选择走 SoC 的发展道路。当时距离交付只剩下八个半月的时间,时间紧、任务重,团队克服重重困难按时交付,并且在巴龙 720 这代产品上实现了很强的竞争力,创下了最短开发周期的纪录,同时这款Modem 也持续为麒麟 920/ 930/ 950 等提供着强劲的通信能力支持。
从巴龙 720 开始,巴龙 750、巴龙 765 等后续产品逐渐走上正轨,随后推出的每一代产品几乎都实现了业界最强的规格,在LTE 时代站稳脚跟。
2019 年 1 月 24 日,华为正式面向全球发布业界领先的 5G 多模终端芯片--巴龙5000 和基于该芯片的首款5G 商用终端--华为 5G CPE Pro,领航 5G 时代。
5G 的形势和 4G 相比已经大不相同。在巴龙 5000 与网络系统设备商联调的过程中,Sean 和 William 及团队听到最多的反馈就是"你们真的很快"。2019 年 6 月 28 日,中国移动发布首份 5G 芯片和终端评测报告,巴龙 5000 不论在网络兼容性、吞吐率上, 还是在续航上,都一骑绝尘。
经过 4G LTE 时代艰苦卓绝的奋斗和积累,巴龙 Modem 芯片终于在市场上喊出了自己的声音,也让行业内的其他厂商刮目相看。"做全球最好的 Modem"成为现实。
麒麟 920:初露锋芒,爆款产品是如何诞生的?
捷总是一家创业公司的 CEO。他是从华为手机部门离职出去的,和原先华为的兄弟们仍然保持联系。2014 年 9 月, 华为推出一款名为 Mate 7 的手机。之后,他的亲朋好友不断地给他打电话,请他帮忙买 Mate 7。他很奇怪,打电话求助华为的兄弟,没想到对方说:"哎呀,不好意思,现在没货。我们自己都抢不到 Mate 7。"电话这头捷总一脸惊愕。
这就是华为爆款手机 Mate 7 刚发布后的情景。它搭载的就是脱胎换骨了的麒麟 920。那么麒麟 920 是如何诞生的?在它之前,经历了什么?在它之后,又发生了什么?
2007 年,如上文讲到的,梅里项目结束后,公司决定兵分三路。经过几年艰难探索和尝试,三个方面军陆续都取得了一些突破:3G Modem 巴龙芯片经过几代的更迭,陆续突破了欧洲、日本等重要的运营商;
AP 处理器经历 K3V1 的小规模出货,到 K3V2, 支撑华为 D1、P6、G710、Mate、D2,P1、D1 XL 等手机产品以及平板、电视盒子和电子相框等大规模出货,奠定了关键技术基础,摸索和积累了一系列产品研发和量产的方法学,在市场上初步打开局面;
4G LTE 团队是革命火种,在 3G 向 4G 变迁的大潮来临之前储备力量,艰苦研发与攻关,终于在 4G 来临时打出了一场又一场漂亮的通信胜仗。
2012--2013 年,国内 4G 即将开始大建设;2G/3G Modem、4G Modem、AP 齐头并进,但分立的 K3V2 和巴龙 710 难以担负起业务发展的使命,要支撑华为手机发展,多模 SoC 推出至关重要。历经昏天黑地的艰难攻关,华为推出了首款手机 SoC 麒麟910,支撑 Mate 2、P6 S、P7、H30 等手机规模发货,获得了良好的口碑。
麒麟为上古时期灵兽,聪慧、祥瑞,拥有来自东方的神秘力量,赋予芯片非凡的智慧和强大的力量。麒麟 910 开始了华为手机 SoC 时代,而最大突破却是来自麒麟 920。
麒麟 920 的一波三折
麒麟 920 和麒麟 910 几乎是并行开发和交付的,这被称为"拧毛巾模式"。但它的诞生却是一波三折。
早在 2012 年 12 月 28 日,大家就在讨论开发一个 K3V2 pro 版本,作为 K3V2 的升级版,重点解决一些问题。但后来大家觉得它的竞争力不太强。2013 年 1 月,公司决定:不要再犹豫了, 果断停掉 K3V2 pro。
2013 年公司新立项一个产品,名称为 K3V3。当时的想法是做一颗规格领先的独立 AP 芯片(为什么业界总有 K3V3 的传说, 原来不是空穴来风),外挂一颗全球首发支持 LTE Cat. 6 的巴龙 720 芯片,采用 AP+Modem 的模式,交付终端客户。
就在项目按计划进行的时候,芯片研发主管 William 敏锐地发现,这种模式的交付,对客户来说,成本竞争力很不够。有没有办法,在保证规格竞争力的同时,大幅降低整体成本,从而为客户提供有竞争力的解决方案版本?
办法总比困难多,通过整体的系统架构设计、规格分析、成本分析,最终项目团队确定,采用整合 AP 和 Modem 的 SoC 方式, 可以在保证规格竞争力的同时,大幅降低芯片成本。确定方案可行之后,William 立即就投入了沟通说服工作,得益于海思专家主管一体的高效机制,方案很快就获得了大家的认可并拍板执行。确定投片时间为 2013 年 4 月。
无限风光在险峰,虽然优化方案得到了认可和实施,但是留给项目组的开发时间却极其有限。整体架构需要重构,媒体部分需要重构,手机验证平台需要重构……一个关键模块的显示子系统,本来是一位新加入的海外高端专家负责,两个月前就觉得快搞定了,可是过了两个月一看,发现还是处于"快搞定"的状态。怎么办?推倒重做。
这时候,芯片专家 James Wang 带头投入,负责关键模块的代码重构和编写开发,两周搞定;验证专家 Tom 又带人扑上去,三周搞定;手机验证平台对交付影响巨大,没有熟悉的人,怎么办?原本做 Modem 验证但从没做过手机芯片验证的专家 Martin 牵头,成功地完成了手机验证平台的重构,这个平台在后来历代麒麟芯片验证交付中发挥了巨大作用。
麒麟 920 采用了 ARM big. LITTLE(大核 CPU 与小核 CPU 相结合的 CPU 架构设计)架构,四个大核 A15,确保强劲的性能; 四个小核 A7,确保优秀的能效。这是当时业界最先进的八核架构,性能和功耗完美均衡。
实际上此前大家曾经对这个架构还很犹豫,纠结于大小核的升级,最后海思总裁何庭波坚决拍板:用大小八核架构,并在专家 James Fang 带领下实现业界第一个真八核 HMP(异构多处理器架构)方案,Benchmark(跑分)和操作体验全面领先,一举超越多家竞争对手。
在 2013 年初的那个阶段,麒麟 910 还在攻关中,甚至巴龙720 也还没有完全稳定下来。但这不影响麒麟 920 紧锣密鼓的研发。2014 年春天,麒麟 910 经历了艰苦的攻关,搭载麒麟 910 的几款手机(尤其是 P7)基本上赢得了消费者不错的口碑,但大家都有点心有余悸。在这种情况下,麒麟 920 的表现尤其值得期待。
这时候麒麟 920 的各项测试指标基本出炉,大家有点不太相信自己的眼睛--实在太强悍了。
2014 年 6 月 6 日,麒麟 920 在华为北研所发布。没人会想到, 这样一款强悍的产品是在华为院士艾伟的自黑中开始的。只有很少的专业媒体受邀参加了本次发布,他们已经被这款产品所震撼。随后,2014 年 6 月底发布的荣耀 6,以及 9 月份发布的华为 Mate 7,成为爆款手机,进一步提升了麒麟 920 的声誉和影响力,它被誉为"国产最强芯"。文章开头所说的 Mate 7 一机难求的故事,就是这个时候发生的。
此后,大家对 SoC 手机芯片的开发更加有把握,更加自信, 也更加出神入化。
2014 年 12 月,麒麟 620 发布,这是华为首款 64 位的手机SoC,其支撑的荣耀 6X 手机成为公司首款出货量超一千万台的手机。可能没人知道,此前公司规划的是麒麟 610,是 32 位的。后来大家果断终止了 610,改为了 64 位的 620。这一做法后来被称为"壮士断腕,绝地重生"。
2015 年 3 月,麒麟 930 发布,它也完成了从 32 位到 64 位的转化,采用了性能和功耗更为均衡的 A53 核,巧妙跳过了手机上的"火炉"A57。这一做法后来被称为"四两拨千斤"。
2015 年 11 月,麒麟 950 发布,业界率先导入 16nm FinFET(鳍式场效应晶体管)顶尖工艺,这是中国半导体厂商第一次站上了半导体工艺的最前沿。其研发历程异常艰险,后文详述。
2016 年 4 月,麒麟 650 发布。这是业界首款在中档位手机SoC 上导入 16nm FinFET 顶尖工艺的芯片,并且实现了全模,即补齐了自研 CDMA 2000(码分多址,3G 移动通讯标准之一,下文简称 CDMA)通信制式。16nm 顶尖工艺支撑麒麟 650 更长的生命周期,成为海思首款出货超亿套的手机 SoC 芯片。这一做法后来被称为"神来一笔"。
补齐通信制式:TD-S CDMA 和 CDMA, 每次都掉一层皮
麒麟 910 是首款 SoC,其不仅要融合 AP 和 Modem,即 K3V2 和巴龙 710(4G Modem)、巴龙 2G/3G Modem,还必须支持中国移动的 TD-S CDMA 制式(时分 - 同步码分多址,3G 移动通讯标准之一,下文简称 TD-S)。TD-S 标准没有国际大厂商投入,只有国内厂商投入,产业链各个环节,仪表、设备、标准的细节、产业化等,都不完备,困难很大。
公司几经讨论,最终决定与中国一家早期研究TD-S 制式的高校合作,从其获得授权。但拿过来之后,发现存有大量问题,诸如代码混乱,时序变化,测试力度不够,商用困难,出问题很难定位,即使定位到,也很难修改。公司花了很大代价开发和稳定这个版本。
TD-S 制式的研发负责人 Andrew 说:2013--2014 年的冬天,TD-S 团队几乎所有的人都去做测试工作了。大家开着自己的私家车,一遍一遍地跑外场,做测试。外面下着大雪,大家一边开车,一边拨打测试电话。现在想想,还真挺危险的。
从 2013 年下半年,一直到 2014 年第二季度,中间经历了长达 9 个月的艰难历程。2013 年底,Paul 临危受命带领大家攻关,Jim 是攻关组长,Andrew 是解决方案软件组长,几乎每天晚上 9 点大家都会开晚例会,分析问题,分工解决问题,通常开完会都十点多了,会后还要继续工作。
2013 年底,一个寒冷的冬夜,Paul 出差北京开完攻关会议回到酒店,接到一个同事电话,请他参加他们部门的年会,Paul 婉拒了。因为他实在太忙了,摆在他面前的难题太多了。这个身经百战、战果累累、年底这段时间本应拿奖拿到手软的部门主管, 此时此刻却几乎要哭出来了。他在想:"我为什么要来负责这块业务?我能做好吗?"
来自内部和外部的压力很大,兄弟们工作很艰苦。很可惜有的人离职了,包括一些骨干。但大部分人仍然在坚持,这些兄弟在这个领域默默坚持了近 10 年,这是他们大好青春的 10 年。Paul 曾经问过这些兄弟,为什么能一直坚持。他们说,没有为什么, 既然定了目标,就一定要做出来。Paul 说,有这群兄弟在,心中就有目标,坚持下去,一定能取得突破。
到 2014 年四五月份,TD-S 的问题终于解决,搭载的手机陆续量产。麒麟 910 背水一战、九死一生的攻关历程,成为大家刻骨铭心的回忆。
麒麟手机 SoC 从 910 开始,到 620、920、930,在通信制式上一直稳定,但还缺一个制式--麒麟芯片一直不支持中国电信的CDMA 制式。这个问题随着全网通手机的普及显得越来越严重。那时的华为全网通手机,要么采用其他厂商的 SoC,要么
采用麒麟芯片加外挂其他厂商的 CDMA Modem。在要不要自研CDMA 制式芯片这个问题上,大家有所争论。有的专家认为,随着 4G 的普及,CDMA 可能将逐渐被淘汰,没有必要去开发一款产品来支持将被淘汰的制式。
但也有很多专家认为,即使 CDMA 本身不演进了,但其还会存在一段时间,全网通一定是大势所趋。麒麟如果没有全模芯片,华为手机的竞争力将受到很大影响。最终,大家达成一致:集成 CDMA 制式。
然而,在是采用其他厂商的授权的CDMA 还是自研的问题上, 大家又开始了争论。Jim 是 CDMA 开发主管,鉴于先前 TD-S 的痛苦经历,他对领导 Paul 说:"你不要从外面买 CDMA。我一定能做出来。"
考虑到时间进度,公司还是和其他 CDMA 厂商开展了谈判, 决定从其获得授权。坊间传说,双方基本谈成,但在最后一刻对方狮子大开口,海思决定不再购买其授权了。于是,开发 CDMA 的任务责无旁贷地落到 Jim 身上,2014 年,他带领团队加紧攻关,终于完成 CDMA 制式。CDMA 的研发,华为公司坚实的通信功底起到巨大作用。架构主管 Jary 说:由于华为基站早就实现了
CDMA 制式,所以从网络侧抽调了若干专家,一起攻关CDMA 终端芯片。但这中间也遇到了很多困难,例如,Jim 曾经发现 RF 芯片锁死,大约每 200 台手机就有一两台出现这种情况,很难定位问题,他和团队以及 RF 的同事,一行一行地检查代码,做压力测试,终于定位到问题并解决。
最终 CDMA 制式在麒麟 650 上成功交付,也为后面所有的麒麟芯片的全网通制式扫清了障碍。此后, 麒麟 950、960、970、980 等在通信规格和性能上一直高歌猛进, 并延续到 5G 时代。
麒麟 950:跨越自我,从鲁莽时代到业界 Tier 1
2015 年秋天,史上最牛的跨越之作麒麟 950 即将量产。作为麒麟解决方案的主管,King 要对套片解决方案端到端量产负责,他这时候有点焦头烂额。他给海思领导 Julian 写了一个邮件,列出麒麟 950 的若干问题和风险,包括 SoC、PMU、RF 等。
他说:"麒麟 950 有可能重演当年梅里的风险。"他的邮件发出去没一分钟,就收到了 Julian 的回复:"你赶紧去产线上盯着。问题不解决不要回来!"King 看着邮件,脑子一片空白,这时电话响了,Julian 说:"你走了没?"
为什么说麒麟 950 是一款超越之作?是因为它在很多方面实现了很大的跨越,不仅超越了自己,而且超越了同时期的业界其他旗舰。比如:
第一次站上了半导体工艺的最前沿,导入 16nm FinFET 顶尖工艺。
首次自研 ISP(图像信号处理)并商用 , 确定了华为手机在拍照领域的领导地位。
首次商用 ARM 最新 CPU、GPU(图形处理器):麒麟 950 首次商用 ARM Cortex A72 CPU 和 ARM MaliT880 GPU,在性能上实现了新的突破。
首次自研 DDR(双倍速率同步动态随机存储器)Phy(端口物理层)并商用 , 同时支持已经成熟的 LPDDR3(低功耗内存技术)和标准还未完全确定的 LPDDR4,支撑华为手机当前和未来的成功。
首次商用自研 PMU:新的 GIC500(通用中断控制器)、新系统总线以及 FBC(帧缓冲压缩)技术应用,使得麒麟 950 具备更强大的硬件性能基础。
Modem 算法的优化:基于对业务的理解和行业标杆的分析, 海思把 Modem 的算法和物理层识别为关键业务,围绕算法设计和工程化能力建设的主线,通过不断优化整合,分层能力建设,逐步确定了在 Modem 上稳固的领先优势。
新一代自研射频芯片 Hi6362,支持更广泛的全球漫游。
新组织架构的首次全方位练兵。一款手机 SoC 芯片,通常是提前 2~3 年开始研发,从规划、设计到生产,环环相扣,每个环节都很重要。2014 年中,无线终端芯片业务部完成组织架构调整,可以说麒麟 950 是组织结构优化调整后第一个真正意义上的芯片团队和解决方案团队通力配合研发出的产品版本。新的组织架构需要磨合,到底是否有效,产品说了算。
2015 年春天,麒麟 950 回片,团队在上海举办了开工会,海思总裁何庭波在开工会上给大家总结了十二个字:夯实基础、踩稳节奏、开放创新。每个模块的负责人都立下了"军令状",团队开足马力向"跨越"这个目标挺进。
但到了下半年,因为麒麟 950 的高规格,全新的工艺、处理器、模拟 IP(知识产权)、PMU、RF,导致套片量产过程中出现了各种问题,工艺和功能问题耦合在一起,DDR 误 bit(比特,二进制制位,信息的最小单位)问题、供应商模拟 IP 的低概率问题、
PMU 的应力不足的 die crack(芯片裂纹)问题、RF 的 ESD(静电阻抗器)问题,每个问题都非常棘手。最要命的是,那时距离手机产品上市只有 2 个月了。这才出现了前文 King 所说的:"麒麟 950 有可能重演当年梅里的风险。"这话并不过分,庆幸的是, 这时候的团队已经不是梅里时的团队。
海思领导 Julian 亲自带头, 连夜跑到供应商处解决问题,Paul 也身先士卒和大家一起讨论解决方案,King 立即赶赴产线,在一线集合海思 SoC、RF、模拟、封装、可靠性、产品线等各方面专家集中攻关两个月。在所有兄弟的共同努力下,终于麒麟 950 得以成功量产。
那么这些问题是如何解决的?先看看麒麟 950 上惊心动魄的RF 问题。
麒麟 950 配套的 RF 芯片是 Hi6362,海思从 3G 时代自研 RF 芯片,到 4G 时代已经基本追平了业界主流水平,Hi6362 已经是第二代 4G RF 芯片,大家信心满满。
2015 年秋天,那时 Mate 8 手机已经投入试产,大家在紧锣密鼓地测试中。一天,由于被测试手机比较多,检测人员无意中发现两台 Mate 8 手机叠放在一起信号会立刻失效,这太恐怖了。
RF 专家 Orion 立即带领团队进行问题定位,经过两个多月的攻关,终于发现是 ESD 出了问题,也就是 RF 芯片生产过程中少了一层膜(mask),这个失误会直接影响到 RF 芯片的可靠性,最终导致芯片无法正常工作。
发现问题的当天下午,开发团队第一时间奔赴 RF 的代工厂,与对方专家一起看版图,最终在凌晨 3 点半发现版图调错的问题,并对另外一个量产版本做了检查,幸运的是这个版本是正确的。
到这里,问题似乎解决了,但一个更棘手的问题摆在大家面前:那时已经生产出来 6 万台 Mate 8 手机,怎么办?按照测试人员的说法,只有两台手机靠在一起,才会出现问题,这种概率比较小。从这个角度来说,这些手机可以销售。
而如果出问题,则会直接影响到华为手机的口碑。考虑到如果这些手机全部报废,会出现价值几亿元的损失,大家不知道怎么办才好。最终海思总裁何庭波果断决策-- 6 万台有问题的手机直接报废,因为华为手机的品质和消费者的信赖是公司生命之本。
麒麟 950 上除了 RF 问题,还有前面提到的工艺问题、ISP 问题等,都一一得到解决。这些内容我们后面分别详细介绍。
2016 年 6 月 20 日,任总给麒麟 950(含巴龙)研发团队颁发了总裁嘉奖令。2016 年 6 月 28 日,海思举办主题为"跨越"的庆功会,徐直军、余承东、何刚、李小龙等均到场,祝贺麒麟 950的成功,并对未来的麒麟提出了更高的希望。
无线终端芯片业务部主管 Paul 说:"别人说我们是奇迹,每一步都很成功,其实每个成功的背后都是大家的艰辛付出。我们是一群普通人,却做出了一流的产品。这其中,目标导向的价值观起到很大作用,大家力出一孔,艰苦奋斗,致力于把事情做好。不服输,长期坚持朝目标努力。新征程,现在,我们要面向未来。"
【钛媒体作者介绍:本文节选自《熵减:华为活力之源》,作者为华为大学。华为大学向华为大学指导委员会汇报,基于独立预算、收支平衡为华为公司提供服务市场化的教育赋能咨询与服务。华为大学是华为"将军"的摇篮,致力于为华为公司的未来培育"将才",使华为战略方向上的关键组织能力快速提升;并为公司提供基于数字化的"教育赋能"核心能力;与此同时,华为大学也是与时俱进的华为公司精神传承与思想教育的重要阵地。】
《熵减:华为活力之源》将会纳入钛媒体Pro版书库,敬请大家关注前沿书库的上新动态~每位Pro专业用户一年可以在书库中任意选择三本书,由钛媒体免费赠送哦~点击链接、登录,进入 "前沿书库"选书:http://www.tmtpost.com/pro
- 人工智能相关好书:http://www.tmtpost.com/3122712.html
- 创业事项相关好书:http://www.tmtpost.com/2788508.html
培养领导力相关好书:http://www.tmtpost.com/2678549.html
更多精彩内容,关注钛媒体微信号(ID:taimeiti),或者下载钛媒体App
Tips: Until now, everytime you want to store your article, we will help you store it in Filecoin network. In the future, you can store it in Filecoin network using your own filecoin.
Support author:
Author's Filecoin address:
Or you can use Likecoin to support author: