2个层面,谈谈快手平台的传播机制
笔者从自己的实际体验出发,对快手的产品设计和作品的传播算法两个层面进行了梳理分析,供大家参考。
玩快手两个月,从 产品设计和作品的传播算法 两个层面谈一下自己的感受。
一、产品设计
进入快手看到的三个菜单:“关注”、“发现”、“同城”。这三个菜单, 是用户发出的作品能够进入的三个流量池 。
“关注”对应的流量池为自己的粉丝,这个页面的元素有三个:视频、作者的头像以及与自己是否是好友关系、视频的时间。页面顺序基本是按照时间降序排列。“时间”是这个页面的核心逻辑, 作品发出后会进入“关注”,但页面是按时间降序排序,作品被当前在线粉丝看到的概率更大, 不一定能被所有粉丝看到。
“同城”对应的流量池是自己所在的城市。页面的主要元素为“地理位置”, 核心逻辑是地理位置的远近,发出的作品能被距离近的人看到,也能被远的人看到。
能被发到“同城”中的作品靠的是发帖人本身的位置,发帖人所在城市的用户密度越大,“同城”的流量池也就越大,但这并不意味着作品能够进入到“同城”,进入了“同城”也并不意味着能够分得城内所有的流量,这个关系到平台的算法。
“发现”对应的流量池,是全平台。 页面暴露的元素为“点赞数”,“点赞数”是核心逻辑。 能进入这个菜单下的作品都是相对优质的作品。
从我自己发作品的经验来看,以上三个 流量池的大小不同,进入的难易程度也不同,大多数作品停留在“关注”,表现好的作品会获得“同城”的流量,表现极好的作品能够进入“发现”。
二、平台的传播算法
今年8月份我开始在快手发作品,根据平台每周的周报梳理了自己的粉丝数、作品播放量等情况。共发了一百多个作品,累积播放量超10W,当前粉丝数1400左右。国庆节期间,作品的播放量有了明显进步。
平台发的周报可以在“私信”中查看:
总结出的周报的算法:播放量:在统计区间内所有作品的新增播放量,包括历史作品;作品数:指在统计区间内新发的作品数;粉丝增额:指统计区间内新增的粉丝数。
这里需要注意的是,周报中给的新增播放量与新增作品数不是一一对应的。播放量是指所有作品的新增播放量。
整个过程中, 第一点感受:初期发的几次作品,都能获得较多的流量,后期慢慢就没有这种福利了。
我们看下数据,08/04,08/11这两个期间发了22+22=44个作品,作品的平均播放量分别为242、370,但是后面08/18、08/25这两个期间发了17+8=25个作品,作品的平均播放量是188、332,后面这半个月平均播放量均有下滑。
推测平台为了鼓励新用户,对新用户发的作品会给予相对多的流量。基于此,快手新用户应抓住平台给予的第一波流量福利,发布优质作品,更高效的换回多的曝光和粉丝。
第二点感受:每次在周末/节假日发出的作品,播放量的总量和上升速度都更好。
上面的表格中,10/06的统计区间正好是国庆节,这期间我单个作品的播放量第一次过万。但是这些作品的内容类型与以前不同,也不能说明问题。
平台发的周报中会讲述好友播放量的前三名,我汇总了不同区间TOP的总播放量变化。结果发现10/06这个区间,前三名的播放总量非但没涨反而降了。
下面是周报中关于TOP信息的展现以及对于不同区间的数据汇总:
从“总和”这一列可以看出,10/06这一周的总播放量是最低的,与我之前节假日有更多流量的想法相违背。
分别查看了每一期的前三名的主页,发现每一期的前三名基本相同,被统计的五期共有15个人,长期被五个人霸榜,图中相同颜色的即为同一人。
出现频率最高的绿色和黄色的主人,平时发的作品基本是与工作相关的,可能因为国庆放假所以发的作品少了,进而影响到总播放量。也有可能我的想法并不成立。
为了进一步观测平台的传播机制,我记录了几个作品发出后不同时间点的播放量情况,如下图所示:
除了上面这些被监控的作品,还要补充两个播放量比较大的作品,因为没有监控过程数字,只能文字叙述一下,一个终值播放量为1W,另一个当前播放量是4.8W,目前还在增长。
播放量1W的生命周期为2天,播放量4.8W的目前已发出五天,当前的粉丝量为1400左右。
从经历过的这些作品来看:
- 90%以上的作品都比较菜,只有少数作品的播放量超过了粉丝量,极少数作品破万;
- 多数作品的生命周期只有两天左右,少数作品可以延续到五天(目前最长的一个);
- 从播放速率来看,作品刚发出后的速率最快,逐渐平缓,最后停滞,有时又会隔几天多几个浏览量;
选取了几个不同播放量的作品,记录了一下它们的点赞数和评论数:
上面的列表中,播放量最大的作品的点赞率、(点赞+评论)率最高,(点赞+评论)率第二的作品的播放量却不是第二。 点赞和评论会影响作品的播放量,但不是简单的影响关系。
除了监控播放量,还监控了不同时间范围内,点击作品的人的“身份”。监控逻辑:通过作品收到的赞和评论,反向查看这些人的主页,(平台不提供“谁看了我的作品”的功能)。
由此发现, 在作品发出的初期,点赞/评论的人基本都是关注自己的人,当作品的播放量超过粉丝量七八倍,近一万时,陆续收到了来自“同城”的人的关注,当作品浏览量近2万开始,陆续收到来自“发现”的人加关注 。
点击自己主页中的粉丝数,即可查看到自己的粉丝列表,粉丝列表中会显示该粉丝的来源,如下:
从上面监控“人”开始,直观的感受体验就是: 大多数作品停留在“关注”,表现好的作品会获得“同城”的流量,表现极好的作品能够进入“发现”。 但因为这个结论是通过反向查看“点赞、评论、关注”等的行为数据反推出来,结论本身也受到这些数据的影响。
上面是发作品的一些感受。在网上看到知乎市场产品总监闫泽华闫老师的演讲,他讲到内容平台的流动模型,可以帮助理解平台的传播机制。讲一下我的理解,模型的主体流程如下:
内容理解→冷启动→用户反馈→扩散or消亡→长尾
- 内容理解:程序会理解用户发出的作品(通过识别作品的标题描述、视频内容等),对作品打上标签加以分类。
- 冷启动:程序理解了作品之后会主动推给可能喜欢它的用户。这里牵涉出另外一个问题,就是程序本身对自己的用户也做了标签归类。新用户发出作品后,即使没有粉丝,也会推给一部分人。我自己的经历中,能直接监测到的第一波看作品的人是自己的粉丝,但作为一个新用户,即使没有粉丝,也会获得流量。
- 用户反馈:作品推给用户后,平台会收集用户的反馈,包括阅读、点赞、收藏、分享、评论等等。
- 扩散or消亡:算法根据收到的反馈做出选择:进行下一步的扩散,还是就此消亡。
- 长尾:在长尾的传播中,会考虑到内容的时效性和周期性。“像娱乐内容其实很容易被用户遗忘,推一波也就完了;美食攻略、旅游攻略类型的内容则会被周期性推送”。
上面的模型是一个宏观模型,对于一些环节有以下几点想法:
用户反馈 :作品发出后,平台可以收集到的反馈指标包括: 打开率、点赞数、评论数、转发数、完播率、关注率 等(指通过看作品而关注作者的比率)。
这些指标再加上时间这个维度,构成一个计算“作品表现”的模型。模型最终得分的高低被作为下一波流量分发的基准。
这五个指标中,“完播率”比较有意思,“关注率”很硬。快手讲究“老铁”,平台中活跃着那么一波人,只要自己的好友发出作品,他们都会去点一圈或评论一圈666,但是他们并没有耐心把这个作品全部看完。
“关注”是对人的认可,点赞和评论等是对作品的认可,关注行为的门槛更高,认为“关注率”很硬。前面4.8W播放量的作品,点赞:评论:关注=3216:105:120。
扩散or消亡 :画了一下演化模型。作品在一次次冲关之后,所得到的用户反馈逐渐接近它的真实水平,就像电商平台的好评率,销量越高,所得到的的好评率相对越准。
在自己的作品播放量不好的情况下,有时候可能会有“是金子没有被发现”的想法,平台提供了推广服务,我购买过两次,做过推广之后,一个作品的终值播放量停留在2200,另外一个作品的终值播放量停留在7107。
得出的结论是:平台算法很有效,如果作品自由传播没有得到好的播放量,那么购买推广服务也没有意义。推广服务所给的投放量,毕竟是非常非常有限的,产品要想传播的好,必须可以自发动。
本文由 @vivi 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。
作者暂无likerid, 赞赏暂由本网站代持,当作者有likerid后会全部转账给作者(我们会尽力而为)。Tips: Until now, everytime you want to store your article, we will help you store it in Filecoin network. In the future, you can store it in Filecoin network using your own filecoin.
Support author:
Author's Filecoin address:
Or you can use Likecoin to support author: