人類的刻板印象,該怎樣讓人工智慧不要有樣學樣?──「AI與性別論壇」
人工智慧(Artificial Intelligence,AI)是這世代的熱門詞彙,以後不用公車司機交給 AI 就好,以後不用醫生看診交給AI 就好,以後不用警察巡邏交給 AI 就好,有種「只要有 AI,一切沒問題」的感覺。然而,AI 沒有想像中那麼神,反而很笨無法指出自己的錯誤,還會複製人類的刻板印象。
- 知名圖庫 ImageNet 將白色禮服的美國新娘的圖片標註為「新娘」、「禮服」,而將穿著紗麗的北印度新娘圖標記為「表演藝術」。
- 常用於語言分析的「詞嵌入」演算法(word2vector),將「女人」和「家庭主婦」放在同一個詞組中。
- Nikon 相機的眨眼偵測功能,總是認定亞洲人在眨眼。註1
身為眼睛小的女人的我看到這些結果,真的快氣到翻桌,難道眼睛小錯了嗎!沒想到這種超「政治不正確」的錯誤居然發生在AI上啊!
餵給機器學習的圖片來源若以美國為主,機器就會將白色的新娘標記為「新娘」,右方的則標註為「表演藝術」。圖/截圖自網頁
為什麼 AI 會犯這樣的低級錯誤?我們應如何「教育」AI,以避免造成學習偏差?
面對這些問題,2019 年 10 月,科技部人社中心辦理了「AI與性別論壇」,邀集性別研究學者和理工背景的學者共同研究、討論,希望未來能朝向性別平等的發展方向。
歧視與偏見從何而來?打開演算法的黑盒子
對深度學習演算法有概念的人都知道:AI 並不能夠如神一般憑空生出答案,其運作邏輯是提供數以萬則的內容,讓它學習如何判讀資料,學成完畢再提供其他內容,就能吐出答案。
假若人提供給 AI 的資料本身就有偏見,AI 做出的分析也有偏見,要知曉 AI 為何產生偏見,就要從演算法如何學到歧視來談起。
跨足性別與計算社會學研究的高醫性別研究所助理教授余貞誼表示,演算法的進行過程必定有「人為操控」的成分,可從演算法操作的四個步驟來說明:
(1)決定測量指標
當我們仰賴 AI 來做判斷時,勢必得將社會科學問題變成「可量化」的數值指標,例如在判斷求職者是否具備「領導力」時,就有衡量領導力的有效指標,可能是下屬的服從性、情緒管控程度……等。
「所以在決定用什麼測量指標時,已經蘊含特定的價值選擇。」余貞誼說。這就像是當我們以「年收入」作為衡量職業價值的指標時,注定只有工程師、醫生是最有價值的。
(2)餵資料進演算法
余貞誼分析ptt各版上與「結婚」相近的詞彙。圖/簡鈺璇
「給機器什麼資料就會吐出什麼結果」,她表示在 PTT 男女版、gay 版和拉版上進行詞嵌入分析,就會發現「結婚」、「生小孩」的詞彙在各版的意義不同。因此,若餵給機器的資料有偏差,得出來的結果也會有問題。
(3)資料的篩選與清理
以詞嵌入分析來說,一組詞彙的關聯詞組可能有 100 多個啊!為什麼工程師只挑 20 個詞組留下來呢?這 20 個詞組能反映真實的狀況嗎?
(4)將大數據變成「厚數據」
AI 得到的東西是簡答,但科學家需要將它再詮釋,解釋為何會跑出這樣的結果,錯誤的詮釋會得到不同的結果。像是 AI 臉部辨識系統傾向將黑人偵測為犯罪者,但不會告訴我們為什麼是這樣的結果,若政府因為錯誤詮釋,認為特定族群就是天生好鬥,而採取有問題的政策,後果就不堪設想。
解決AI偏見的幾個解方
那麼面對這堆演算法的問題,有沒有辦法解決呢?如何避免機器成為「性別盲」和「種族主義者」呢?學者提出以下幾個解方:
(1)透明化演算法
「陽光是最好的殺蟲劑」余貞誼認為,演算法被認為是黑箱,是因為大眾不知道許多演算法的設計過程及資料的建立方式,她建議工程師應該將演算法的過程公開,讓大家有檢視與討論的機會。
(2)建立檢核演算法的機制
有些演算法的參數可以被歸納,但更多時候是我們餵給機器一堆東西,根本不知道它運算所考慮的參數。
黃從仁把AI當成人來研究,測出機器人對美的判斷標準,結果發現塗白全臉的分數最高。圖/簡鈺璇
臺大心理系助理教授黃從仁就把AI當成人來研究,透過實驗法與觀察法,測出線上選美比賽的判斷標準,找到AI的bug所在,原來把臉塗成全白在比賽中會拿下冠軍。也許用回推的方式,有助於我們理解AI的侷限與偏見。
(3)理解資料建立的歷史,及它所反映的權力關係
臺大社會系教授吳嘉苓說:「科技使用某程度反映我們在這個社會中的權力關係。」像是輔助型機器人、語音助理總是女性,戰鬥型機器人則為男性,作為程式設計者需要意識到這個問題,去思考為什麼要這樣設計。
圖/吳嘉苓認為,科技使用反映社會的權力關係,值得大家好好思考。圖/簡鈺璇
科學領域中性別比例均衡也是能讓演算法價值多元的方式,吳嘉苓提到,世界經濟論壇的統治指出,在AI研究領域中男性高達78%,而女性僅有22%。
(4)從 AI 到 AIs 促成演算法間的對話
臺大語言所副教授謝舒凱表示,AI 應用的目的就是要優化分類效率,而非以價值多元為取向,假使你要機器辨析誰是男生、誰是女生,你不能要機器體認到穿裙子的人可能是男生吧!因為穿裙子又是男生機率太難估算了。
此外,深度學習常是 supervised(監督式)學習,需給電腦正確答案,但一來人本身就是有偏見的,二來電腦若要考慮個別差異,給出不同的答案,那麼注定犧牲運算效能。
謝舒凱認為,AI追求效能優化與我們期待的價值多元是互相抵觸的。圖/簡鈺璇
謝舒凱坦言,科技部訂定「人工智慧科研發展指引」註2的立意良善,強調AI研究發展要有「以人為本」、「永續發展」及「多元包容」的核心價值,這牴觸 AI 的發展本質,所以能做的事很有限。
「From AI to AIs」才是重點,他認為目前偏向通用演算法的發展方式,大家都是根據某些 code 做改良,但單一演算法稱霸容易產生盲點,因此演算法的開發也應該多元,讓不同 AI 間可以互動和比對,「社會學家應該做出為人類發展的AI!」
行文至此,我們或許可以思考 AI 的發展意義,以及 AI 發展中所帶來的得與失,也許就會發現很多問題根本不適合用 AI 解決,而控制與效率也未必是最好的價值。
註釋
- AI can be sexist and racist — it’s time to make it fair
- 科技部訂定「人工智慧科研發展指引」 完善我國AI科研發展環境
泛科學自製商品
從內子宮到外太空,科學離不開我們生活中的時時刻刻,時光走入西元 2020,讓泛科學也走入你生活的每一天!【時時科科 2020桌曆】 精選不容錯過的科學日,讓你記下屬於自己的重要日程,也記下科學史上的精彩片段。
泛科學院獨家線上新課募資 限量55折預購
「上台說話報告時腦袋一片空白嗎?與人對談尷尬癌就發作?如何清楚表達自己想說的話?怎麼說話才能抓住人心讓人印象深刻呢?」泛科學院與榮恩同樂會共同合作,從表達的心法到語言聲韻的技巧掌握,讓你找到自信,在家就可練出好口才!
The post 人類的刻板印象,該怎樣讓人工智慧不要有樣學樣?──「AI與性別論壇」 appeared first on PanSci 泛科學.
作者暂无likerid, 赞赏暂由本网站代持,当作者有likerid后会全部转账给作者(我们会尽力而为)。Tips: Until now, everytime you want to store your article, we will help you store it in Filecoin network. In the future, you can store it in Filecoin network using your own filecoin.
Support author:
Author's Filecoin address:
Or you can use Likecoin to support author: