澎思科技车辆再识别(VehicleReID)刷新纪录,关键指标大幅提升
近日,澎思科技车辆再识别(Vehicle ReID)技术在非受限场景车辆再识别数据集VERI-Wild上的成绩刷新世界纪录,并打破了VCIP 2019车辆再识别大型挑战赛的最好成绩。澎思科技基于自主研发的全局和局部深度特征融合算法模型,实现了车辆再识别算法关键指标平均精度均值(Mean Average Precision,mAP)和首位命中率(Rank-1 Accuracy)的大幅度提升,在VERI- Wild数据集上平均精度均值mAP达到85.35%。
车辆再识别在智慧城市和公共安全方面有着广泛的应用前景和至关重要的作用,一直是计算机视觉领域研究的焦点。
车辆再识别面临的挑战以及VERI-Wild数据集的推出
车辆再识别,也称为车辆检索,旨在找到不同监控场景下的同一辆车。近期随着深度学习技术的发展,车辆再识别算法效率显著提升。然而现有数据集的限制过度简化了车辆再识别面临的现实挑战,使得基于大部分现有数据集开发和评估的ReID模型在真实场景中的泛化能力可能存在问题。真实监控情景中的车辆再识别仍然面临高度视角差异、极端照明条件、复杂背景和不同的摄像头来源等挑战。非受限场景车辆再识别数据集VERI- Wild的推出就致力于解决这些问题。VERI- Wild与Vehicle ID、VeRI-776数据集的样本比较VERI- Wild是在2019年CVPR期间对外发布的车辆再识别数据集。该数据集由40,000个车辆标识中的400,000张图像以及诸如车辆品牌、颜色和车型等附加信息组成,这些信息可用于增强ReID框架的性能或作为独立的采集任务。VERI- Wild数据集旨在应对现有数据集在车辆标识和图像数量不够大、摄像头数量和覆盖区域有限、摄像头视角高度受限及光照度和天气状况没有明显变化等局限性问题,是目前最具挑战的车辆再识别数据集。
澎思科技提出面向车辆再识别的全局和局部深度特征融合方法
在2019年IEEE视觉通信和图像处理国际会议(VCIP)期间举办的Grand Challenges on Vehicle ReIdentification车辆再识别大型挑战赛上,澎思科技提出面向车辆再识别的全局和局部深度特征融合方法。澎思科技首席科学家、新加坡研究院院长申省梅受邀参会,并做了《Global and Local Deep Feature Representation Fusion for Vehicle Re- Identification》的报告。澎思科技首席科学家、新加坡研究院院长申省梅受邀出席VCIP 2019由于很多具有不同标识的车辆有着极其相似的外观,因此澎思算法团队通过各种不同的方法,利用车辆的具体部件,选取基于部件的特征来执行模型预测。如此一来,模型便能更好地了解部件的独有特征。
澎思科技提出的全局和局部深度特征融合方法最近,澎思新加坡研究院车辆再识别算法团队考虑到ReID任务中采用特征向量(不采用分类层)来计算距离矩阵,进而比较两个图像之间的相似性,分类缺失本身并不足以实现良好的模型训练。于是,团队又将深度度量学习(DML)应用于最新模型中,使得类内三联体之间的距离小于(至少有某一差距)类间三联体之间的距离,从而提升模型的性能表现。
经过测试,澎思科技提出的车辆再识别算法模型在VERI- Wild不同大小的三个测试集中,性能远远优于基线模型,平均精度均值mAP和首位命中率Rank-1实现大幅度提升,刷新世界纪录。[1] VERI-Wild: A Large Dataset and a New Method for Vehicle Re-Identification in the Wild
车辆再识别数据集VERI-WILD评估结果
同样,该模型的表现也优于VCIP 2019 Grand Challenges on Vehicle ReIdentification车辆再识别大型挑战赛上排名第一的中科院自动化所团队。VCIP 2019车辆再识别大型挑战赛测试集结果对比
ReID算法持续优化, 深化面向场景的AI技术研发与创新
行人再识别和车辆再识别同属于目标再识别的两个重要任务,主要用于解决目标的跨镜头跟踪,通过场景匹配实现行人/车辆的跨镜追踪以及轨迹预测等。ReID是跨摄像头跟踪中解决目标因为视野丢失后再匹配最直接的方法,是单摄像头中多目标和单目标跟踪的一种非常有效的特征。澎思科技在目标再识别上积累了丰富的算法,取得了多项世界级成果,并逐步实现ReID技术在智慧城市建设场景中的落地应用。
今年,澎思科技在行人再识别(PersonReID)和基于视频的行人再识别(Video- basedPersonReID)先后取得突破。7月,澎思科技在行人再识别三大主流数据集测试Market1501、DukeMTMC- reID、CUHK03上算法关键指标首位命中率(Rank-1 Accuracy)获得业内最好成绩,刷新了世界纪录。8月,澎思科技在基于视频的行人再识别三大数据集PRID-2011,iLIDS- VID,MARS上同样刷新世界纪录,实现算法关键指标大幅度提升。
此次澎思科技在车辆再识别(VehicleReID)非受限场景数据集下取得的成绩,同样印证了公司坚持展开面向场景的AI技术研发。非受限场景下的车辆再识别更贴近实际应用场景,澎思科技凭借自研的算法模型,有效提升了算法在诸如高度视角差异、极端照明条件、复杂背景和多摄像头来源等现实挑战下的性能表现。接下来,澎思科技将逐步实现算法在平安城市、智慧交通等领域的落地应用。
在人工智能行业进入商业化落地主导的产业化阶段,澎思科技作为一家专注于计算机视觉和物联网技术,提供“以人为核心”行业综合应用解决方案的人工智能公司,将持续深化面向场景的AI技术研发与创新,针对用户需求深挖场景,发现行业痛点并不断打磨算法和产品,将技术真正应用到业务场景中,推动AI技术的产品化落地和商业化进程。
作者暂无likerid, 赞赏暂由本网站代持,当作者有likerid后会全部转账给作者(我们会尽力而为)。Tips: Until now, everytime you want to store your article, we will help you store it in Filecoin network. In the future, you can store it in Filecoin network using your own filecoin.
Support author:
Author's Filecoin address:
Or you can use Likecoin to support author: